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Introduction

HIS second study focuses on the suppression of instability
growth using an automated active-control technique. This au-

tomated approach is the next logical step based on previous exper-
imental and computational studies reviewed by Joslin et al. t and

Thomas, 2 in which the control was in the form of wave cancella-
tion. The wave-cancellation method assumes that a wavelike dis-

turbance can be linearly canceled by introducing another wave that

has a similar amplitude but that differs in phase. Both experimental
and computational results have demonstrated that two-dimensional

Tollmien-Schlichting (TS) waves can be superposed upon two-

dimensional waves in such a way as to reduce the amplitudes in the

original waves under the presumption of wave cancellation. Joslin
et al. t have definitively shown that flow control by wave cancellation

is the mechanism for the observed phenomena. Three simulations

were performed in their computational study to demonstrate the
wave-cancellation concept. The first simulation obtained the evolu-

tion of a two-dimensional instability generated by periodic suction

and blowing forcing, the second simulation yielded an instability

caused by a suction and blowing actuator in the absence of and

downstream of the forcing used in the first simulation, and the third

simulation computed the evolution of a disturbance resulting from

both forcing and actuator suction and blowing (wave-cancellation

test case). Joslin et al) showed that the superposition of the first and

second simulation results exactly matched the wave-cancellation
simulation results.

Based on the wave-cancellation assumption, the evolution and au-

tomated control of spatially growing two-dimensional disturbances

in a flat-plate boundary layer are computed. Although the present

active-control approach is demonstrated here for a two-dimensional

instability test case, the ultimate goal of this line of research is to
introduce automated control to external flow over an actual aircraft

or to any flow that has instabilities that require suppression.

The nonlinear computations consist of the integration of the sen-
sots, actuators, and controller as follows: the sensors will record

the unsteady pressure or shear on the wall; the spectral analyzer

(controller) will analyze the sensor data and prescribe a rational

output signal; the actuator will use this output signal to control the
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Fig. 1 Schematic of active control with wave cancellation.

disturbance growth and stabilize the instabilities within the laminar

boundary layer. This scenario is shown in Fig. 1. Although a closed-
loop feedback system could be implemented (using an additional

sensor downstream of the actuator) to fully automate the control

and to lead to an exact cancellation of the instability, the feedback

will not be introduced here due to the added computational expense

of the iterative procedure.

Numerical Techniques

The nonlinear, unsteady Navier-Stokes equations are solved by

direct numerical simulation (DNS) of disturbances, which evolve

spatially within the boundary layer. The spatial DNS 3'4 approach

involves spectral and high-order finite difference methods and
a three-stage Runge-Kutta method s for time advancement. The

influence-matrix technique is employed to solve the resulting pres-

sure equation. 6'7 Disturbances are forced into the boundary layer

by unsteady suction and blowing through a slot in the wall. At

the outflow boundary, the buffer-domain technique of Streett and

Macaraeg s is used.

The equations are nondimensionalized with the freestream ve-

locity Uoo, the kinematic viscosity u, and the inflow displacement

thickness 3c]. The Reynolds number becomes R = U_8_/v, and the

frequency is _ = w*8_/Uoo.

Control Method

Here, the term "controller" refers to the logic that is used to

translate sensor-supplied data into a response for the actuator, based

on some control law. For the present study, a spectral controller

requires a knowledge of the distribution of energy over frequencies

and spatial wave numbers. For this automated controller system, a
minimum of two sensors must be used to record either the unsteady

pressure or unsteady shear at the wall. By using Fourier theory, this

unsteady data can be transformed via

f(w) = f(t)e -i'°' dt (1)
oo

where f(t) is the signal and co is the frequency. This transform
yields an energy spectrum that indicates which frequencies exist in
the signal and how much relative energy each frequency contains.

The largest Fourier coefficient indicates the frequency that will
be used to control the instability, although the largest growth rate

can be used instead of largest coefficient. The information from the
two sensors is used to obtain estimates of both spatial growth rates

and phase via the relation

1 dA
a = ---- (2)

Adx

This temporal and spatial information is then substituted into the

assumed control law, or wall-normal velocity boundary condition,

v, (x, t) = v,, × p'u,exp[i(w + dpr)t + ax,] + c.c. (3)

where p_, is the complex pressure (or shear) for the dominant fre-

quency mode (or largest growth-rate mode) at the first sensor, w

is the dominant mode determined from Eq. (1), _bs is the phase
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information, t is the time, ot is the growth-rate and wave number

information calculated from Eq. (2), and x, is the distance between
the first sensor and the actuator. Because the sensor information can

be used only to approximate the actuator amplitude and temporal

phase, vw and ¢,_ are parameters that must be optimized to obtain

exact wave cancellation. This may be accomplished through, for

example, a gradient descent algorithm. (Here, no attempt was made

to demonstrate exact wave cancellation.)

This control law is used only for this feasibility study. Aspects

of formal optimal-control theory and artificial neural-network algo-

rithms are currently being tested by the authors for use in a subse-

quent study.

Numerical Experiments

For this study, we are not concerned with the method by which

disturbances are ingested into the boundary layer; the underlying

assumption here is that natural transition involves some dominant

disturbances that can be characterized by waves. In a subsequent

study, we will explore controlling transition consisting of either

random unsteady or three-dimensional nonlinear and arbitrary in-
stabilities. Here, the instabilities are assumed to be characterizable

by discrete frequencies within the spectrum.

For the computations, the grid has 661 streamwise and 61 wall-

normal points. The far-field boundary is located 758_ from the wall,

and the streamwise distance is 3088_ from the inflow, which is equal
to approximately 11 TS wavelengths. The disturbance frequency is

Fr = _o/R x 106 = 86, and the Reynolds number is R = 900

at the inflow. (The streamwise range of the computations and the

relative sensor and actuator are located within the unstable region

of the linear stability neutral curve.) A time-step size of 320 steps

per period is chosen for the three-stage Runge-Kutta method. To

complete a two-dimensional, simulation, 0.9 h on the Cray Y-MP

are required with a single processor. (Refer to Ref. 3 for details on

accuracy issues with grid refinement.)

For this study, the disturbance forcing slot has a length 5.13&_

and is centered 23.108_ downstream of the computational inflow

boundary. The first sensor is located 57.883_ downstream of the

inflow, and the second sensor is located 2.338_ downstream of the

first sensor. The actuator has a slot length 4.673_ and is located

77.94_ downstream of the inflow boundary. These separation dis-
tances were chosen arbitrarily for this demonstration. Ideally, the

forcing, sensors, and actuator should have a minimal separation dis-

tance to improve the accuracy of the sensor information provided to
the actuator.

A small-amplitude disturbance (vf = 0.01%) is forced at the in-
flow and controlled via the automated control law without feedback.

Figure 2 shows the TS wave amplitudes with downstream distance

for the present results compared with the control case (v,, = 0.9v f;
_bt = 1.27r/to) of Joslin et al. t and the uncontrolled wave. The
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Fig. 2 Active control of small-amplitude TS waves in flat-plate bound-
ary layer.
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Fig. 3 Active control of large.amplitude TS waves in fiat-plate bound-

ary layer.

present results demonstrate that a measure of wave cancellation can

be obtained from the automated system before initiating feedback;

however, feedback is necessary to optimize the control amplitude

and phase for exact cancellation of the disturbance.
Next, the evolution and control of a large-amplitude disturbance

(v/ = 3%) is studied. This large-amplitude case excites harmon-
ics and a mean-flow distortion component with much smaller am-

plitudes than the fundamental-mode amplitude. Figure 3 shows
comparisons for the control of the large-amplitude case. Again, the

automated control can clearly obtain a degree of wave cancellation

for large-amplitude instabilities without optimization and without

causing the harmonics to prematurely grow. These test cases demon-

strate that automated control can be effective with the presumption

of discrete frequency instability waves.

Conclusions

Full Navier-Stokes simulations were conducted to determine the

feasibility of automating the control of wave instabilities within

a flat-plate boundary layer with sensors, actuators, and a spectral
controller.

The results indicate that a measure of wave cancellation can be ob-

tained for small- and large-amplitude instabilities without feedback;
however, feedback is required to optimize the control amplitude and

phase for exact wave cancellation.
This study is only the second in a series aimed at suppressing

the instabilities that lead to transition within an otherwise laminar

boundary layer with unsteady flow control. Follow-on research will

focus on coupling optimal control theory with the Navier-Stokes

equations to devise a control methodology without distinct control

laws. This methodology focuses on the minimization of the wall

shear at a prescribed region downstream of the actuator. This flow

control could lead to suppression of arbitrary instabilities in a lam-

inar boundary layer, drag reductions in a turbulent boundary layer,
or enhanced lift by separation control.
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